线性函数的定义(线性函数的定义是什么时候学的)
好酷屋教程网小编为您收集和整理了线性函数的定义(线性函数的定义是什么时候学的)的相关教程:线性函数定义是指那些线性的函数,但也常用作一次函数的别称,尽管一次函数不一定是线性的(那些不经过原点的)。线性函数可以表达为斜截式:f(x)=mx+b,其中,m是斜率,b是y-截距,函数的图形与y-轴
线性函数定义是指那些线性的函数,但也常用作一次函数的别称,尽管一次函数不一定是线性的(那些不经过原点的)。线性函数可以表达为斜截式:f(x)=mx+b,其中,m是斜率,b是y-截距,函数的图形与y-轴相交点的y-坐标。改变斜率m会使直线更陡峭或平缓,改变y-截距b会将直线移上或移下。
线性关系:
两个变量之间存在一次函数关系,就称它们之间存在线性关系。
正比例关系是线性关系中的特例,反比例关系不是线性关系。
更通俗一点讲,如果把这两个变量分别作为点的横坐标与纵坐标,其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系。
函数:
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
以上就是好酷屋教程网小编为您收集和整理的线性,函数,定义域相关内容,如果对您有帮助,请帮忙分享这篇文章^_^
本文来源: https://www.haoku5.com/jiaoyu/640d3697b730e438e40be79c.html
相关推荐
分享到: